Volatility and the role of order book structure

R Becker
Economic Studies, University of Manchester

A Clements
School of Economics and Finance, Queensland University of Technology, NCER.

Abstract

There is much literature that deals with modeling and forecasting asset return volatility. However, much of this research does not attempt to explain variations in the level of volatility. Movements in volatility are often linked to trading volume or frequency, as a reflection of underlying information flow. This paper considers whether the state of an open limit order book influences volatility. It is found that market depth and order imbalance do influence volatility, even in the presence of the traditional volume related variables.

Keywords
Realized volatility, bi-power variation, limit order book, market microstructure, order imbalance

JEL Classification Numbers G10, G12

Corresponding author
Adam Clements
School of Economics and Finance
Queensland University of Technology
Brisbane, 4001
Qld, Australia
email a.clements@qut.edu.au
1 Introduction

Understanding the dynamics of financial asset return volatility is of central importance when making many financial decisions. There is a vast financial econometrics literature that address the question of modeling and forecasting volatility. Surveys of this area can be found in Campbell, Lo and MacKinlay (1997), Gourieroux and Jasiak (2001) and Andersen, Davis and Kreiß (2009). Much of this literature has stemmed from the development of the GARCH class of models attributable to Engle (1982) and Bollerslev (1986). The majority of this research does not attempt to explain the fundamental determinants of volatility and simply focuses on forecasting.

There is also a strand of literature that attempts to explain variation in volatility. Broadly speaking, volatility reflects information arrival which is captured by trading volume or frequency, or order flow (imbalance). Theoretically, Clark (1973), Tauchen and Pitts (1983) and Andersen (1996) among others relate volatility and trading volume jointly to the process of information arrival. From an empirical perspective, the volume volatility relationship has attracted a great deal of interest. A number of studies find that the number of trades is dominant factor in explaining volatility, see for instance Jones, Kaul and Lipson (1994) and Chan and Fong (2006). The evidence is mixed in relation to the importance of variables such as trading volume and order flow. Berger, Chaboud and Hjalmarsson (2009) link movements in volatility to order flow and market’s sensitivity to the order flow. Giot, Laurent and Petitjean (2009) examine the volume volatility relationship from the perspective of the components of realized volatility. They find that the number of trades influences both the continuous diffusion (positive relationship) and jump (negative relationship) components of total realized volatility.

Little research has examined the relationship between order book structure and asset return volatility, certainly in the context of the volume volatility relationship. Pascual and Veradas (2010) consider the link between order book structure and the volatility of the unobserved efficient price. This paper examines the link between volatility and trade frequency and volume variables, along with a number of variables that reflect the structure of an open limit order book. In the context of a number of stocks trading on the Australian Stock Exchange (ASX), it is found that market depth and order imbalance significantly influence volatility, even in the presence of trading volume and frequency variables. These results represent an important contribution to our understanding of the fundamental source of volatility, market trading conditions.

The paper proceeds as follows. Section 2 outlines the manner in total volatility is decomposed into its constituent components. Section 3 outlines the data upon which the study is based and how the relevant explanatory variables are constructed. Section 4 describes the analysis
conducted here along with the empirical results. Section 5 provides concluding comments.

2 Methodology

To obtain a proxy for the underlying latent volatility, we utilise the realized volatility (RV) estimator of Andersen and Bollerslev (1998). To briefly outline this approach, begin by defining the continuous time jump-diffusion process for the logarithm of an asset price, \( p(t) \),

\[
dp(t) = \mu(t)dt + \sigma(t)dW(t) + \kappa(t)dq(t),
\]

where \( \mu(t) \) is a drift process, \( \sigma(t) \) is a stochastic volatility process, \( W(t) \) is a standard Brownian motion and \( q(t) \) is a pure jump process with intensity \( \lambda(t) \) and jump size \( \kappa(t) \).

The original RV estimator of Andersen and Bollerslev (1998) generates an estimate of total volatility for day \( t \)

\[
RV_t(\Delta) \equiv \frac{1}{\Delta} \sum_{j=1}^{1/\Delta} r_{t+\Delta,\Delta}^2 \rightarrow \int_{t-1}^{t} \sigma^2(s)ds + \sum_{j=1}^{N_t} \kappa_{t,j}^2
\]

\[
\Delta \rightarrow \int_{t}^{t-1} \sigma^2(s)ds
\]

where \( r_{t+\Delta,\Delta} = p(t) - p(t - \Delta) \) is a \( \Delta \)-period return with \( 1/\Delta \) number of intraday periods, \( N_t \) is the number of jumps and \( \kappa_{t,j} \) is the \( j \)-th jump on day \( t \).

It is widely acknowledged that RV is a more accurate and less noisy estimate of the unobserved volatility process than squared daily returns (see amongst others, Poon and Granger 2003). Barndorff-Nielsen and Shephard (2004) proposed a refinement to RV, realized bi-power variation (BPV) as an estimator of the continuous component of volatility even in the presence of jumps

\[
BPV_t(\Delta) \equiv \mu_1^{-2} \sum_{j=2}^{1/\Delta} \|r_{t+j,\Delta,\Delta}||r_{t+(j-1),\Delta,\Delta}| \rightarrow \int_{t-1}^{t} \sigma^2(s)ds
\]

where \( \mu_1 = \sqrt{2/\pi} \). The difference between realized volatility and bi-power variation consistently estimates the contribution to total volatility from jump activity, \( RV_t(\Delta) - BPV_t(\Delta) \rightarrow \sum_{j=1}^{N_t} \kappa_{t,j}^2 \) as \( \Delta \rightarrow 0 \).

To select statistically significant jump contribution, as opposed to all jumps we employ the methodology of Huang and Tauchen (2005) and Andersen, Bollerslev and Diebold (2007). To begin, compute the Z statistic

\[
Z_t(\Delta) \equiv \Delta^{-1/2} \frac{[RV_t(\Delta) - BPV_t(\Delta)]RV_t(\Delta)^{-1}}{[\mu_1^{-1} + 2\mu_1^{-2} - 5] \max\{1, TQ_t(\Delta)BPV_t(\Delta)^{-2}\}]^{1/2}}
\]

where \( TQ_t(\Delta) \) is the tri-power quarticity\(^1\).

Given a level of significance, \( \alpha \) significant jumps are given by

\[
J_{t,\alpha}(\Delta) = I_{t,\alpha}(\Delta)[RV_t(\Delta) - BPV_t(\Delta)]
\]

\(^1\)An expression for \( TQ_t(\Delta) \) can be found in Andersen, Bollerslev and Diebold (2007) or Giot et al. (2009)
where $I_{t,\alpha}(\Delta)$ is an indicator taking the value of one if $Z_t(\Delta) > \Phi_\alpha$, with $\Phi_\alpha$ being the relevant critical value from the standard normal. To ensure that the continuous and jump components sum to total realized volatility, the continuous component is defined as

$$C_{t,\alpha}(\Delta) = [1 - I_{t,\alpha}(\Delta)]RV_t(\Delta) + I_{t,\alpha}(\Delta)BPV_t(\Delta).$$

(6)

Giot et al. (2009) examine the relationship between trading volume and frequency, and total RV along with both the continuous ($C_{t,\alpha}(\Delta)$ from equation 6) and jump components ($J_{t,\alpha}(\Delta)$ from equation 5). In contrast to Giot et al. (2009) we find that $J_{t,\alpha}(\Delta)$ is not significantly related to any of the variables considered, for values of $\alpha$ ranging from 0.9 to 0.995. Hence, we have not reported any results pertaining to the jump component below. The additional variables beyond those considered by Giot et al. (2009) relate to order book structure. The data upon which these variables are based, along with the volatility components will be described in the following section.

3 Data and variables of interest

This study is based on data pertaining to six of the largest stocks trading on the Australian Securities exchange. Two banking stocks, National Australia Bank (NAB) and Commonwealth Bank of Australia (CBA), two resource stocks, BHP Billiton (BHP) and Rio Tinto (RIO), QANTAS (QAN) are utilised. The period under consideration is 1 May 2009 to 30 April 2010, representing 253 trading days. For each of these days, all transaction and quote arrivals were obtained for each of the stocks. Quotes arrivals at the first five levels of the order book (both bid and ask sides) were obtained. Due to the market opening process, data is only collected after 10.10am for each trading day.

Mid-quote prices are computed (based on most recent quotes) at one-minute intervals throughout the trading day. These prices that are used to compute the total RV from equation 2, and its constituent continuous components from equation 6. To do so, prices and returns sampled at 15 minutes have been used. Subsequent empirical results are based on $\alpha = 0.99$ in the computation of $C_t$ (dependence on $\alpha$ and $\Delta$ are suppressed from herein).

Simple total daily volume ($vol$) and number of trades ($ntrades$) are recorded for each stock. Daily order flow ($orflow$) was determined by the absolute value of the sum of volume of buy (positive) and sell (negative) volume where the direction of each trade was classified using the approach of Lee and Ready (1991). This is equivalent to the variable denoted as order imbalance by Giot et al. (2009). Beyond the variables reflecting trading activity, and following Pascual and Veradas (2010), a number of measures capturing the state of the order book are also considered.
The first variables are the displayed depth in the order book at the best bid \(D^b\) and ask \(D^a\) quotes. Next, depth beyond the best quotes is considered. Following Pascual and Veradas (2010) define this as the accumulated depth up to \(k\) ticks from the quote mid-point on both the bid \(D^b(k)\) and ask \(D^a(k)\) sides of the market. Order imbalance in the best quotes is given by \(OI = |D^a - D^b|\), and beyond the best quotes, \(OI(k) = |D^a(k) - D^b(k)|\). Depth and imbalance variables are taken as the average within each trading day.

Table 1 reports basic descriptive statistics for the market trading variables and volatility components respectively. RV and \(C_t\) obviously show very similar characteristics. BHP and RIO returns are somewhat more volatile than those of CBA and NAB. In all cases, there is a degree of positive skew associated with the volatility estimates. The next panels show that BHP has the highest combined volume and number of trades, with little association between the number of trades and volume across the other stocks in the sample. BHP also exhibits the greatest mean level, and volatility of order flow, with a great deal of positive skewness across all stocks. For each of the stocks, the depths at the best bid and ask quotes are very similar (BHP showing the greatest depth and RIO the least). This pattern shows that on average, the order book is balanced at the best quotes. Setting \(k = 2\), shows that on average, the order book for each stock is less balanced than at the best quotes\(^2\). In all cases, \(OI\) and \(OI(k)\) exhibit a degree of positive skewness.

4 Empirical analysis

We begin by examining the simple volume volatility relationship. In this case \(RV_t\) and \(C_t\) will be regressed against \(vol, ntrades\) and \(orflow\). Parameters are estimated via OLS regression with Newey-West standard errors. To start, the relationship between the volume variables and the volatility components will be examined by estimating

\[
RV_t \text{ or } C_t = \alpha + \beta x_t + \varepsilon_t
\]

where \(x_t\) represent \(vol, ntrades\) or \(orflow\).

Results from these regressions are reported in Tables 2 for \(x_t\) given by \(vol, ntrades\) and \(orflow\) respectively. It is clear from the top two panels, that both total RV and the associated diffusion component, \(C_t\) exhibit significantly positive relationships with \(vol\) and \(ntrades\). Overall, these results are consistent with Giot et al. (2009). While Giot et al. (2009) also find that \(orflow\) has a significant effect on volatility, the results reported here show that this is not the case for the stocks considered here.

\(^2\)Subsequent empirical results were also generated based on \(k = 4\). Results remain unchanged.
<table>
<thead>
<tr>
<th></th>
<th>BHP</th>
<th>CBA</th>
<th>NAB</th>
<th>RIO</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>RV</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>$6.92 \times 10^{-5}$</td>
<td>$1.06 \times 10^{-4}$</td>
<td>$1.12 \times 10^{-4}$</td>
<td>$9.92 \times 10^{-5}$</td>
</tr>
<tr>
<td>SDev</td>
<td>$4.04 \times 10^{-5}$</td>
<td>$5.57 \times 10^{-5}$</td>
<td>$5.51 \times 10^{-5}$</td>
<td>$5.93 \times 10^{-5}$</td>
</tr>
<tr>
<td>Skew</td>
<td>1.10</td>
<td>0.665</td>
<td>0.648</td>
<td>0.808</td>
</tr>
<tr>
<td><strong>C_{t,o}(\Delta)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>$6.58 \times 10^{-5}$</td>
<td>$9.96 \times 10^{-5}$</td>
<td>$1.05 \times 10^{-4}$</td>
<td>$9.30 \times 10^{-5}$</td>
</tr>
<tr>
<td>SDev</td>
<td>$4.00 \times 10^{-5}$</td>
<td>$5.31 \times 10^{-5}$</td>
<td>$5.58 \times 10^{-5}$</td>
<td>$5.80 \times 10^{-5}$</td>
</tr>
<tr>
<td>Skew</td>
<td>1.08</td>
<td>0.695</td>
<td>0.746</td>
<td>0.952</td>
</tr>
<tr>
<td><strong>vol</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>$1.07 \times 10^{7}$</td>
<td>$3.54 \times 10^{6}$</td>
<td>$6.36 \times 10^{6}$</td>
<td>$2.92 \times 10^{6}$</td>
</tr>
<tr>
<td>SDev</td>
<td>$4.05 \times 10^{6}$</td>
<td>$1.41 \times 10^{6}$</td>
<td>$4.18 \times 10^{6}$</td>
<td>$1.76 \times 10^{6}$</td>
</tr>
<tr>
<td>Skew</td>
<td>1.34</td>
<td>1.59</td>
<td>7.19</td>
<td>2.73</td>
</tr>
<tr>
<td><strong>ntrades</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>$1.31 \times 10^{4}$</td>
<td>$1.04 \times 10^{4}$</td>
<td>$9.74 \times 10^{3}$</td>
<td>$1.06 \times 10^{4}$</td>
</tr>
<tr>
<td>SDev</td>
<td>$2.98 \times 10^{3}$</td>
<td>$2.78 \times 10^{3}$</td>
<td>$2.91 \times 10^{3}$</td>
<td>$3.31 \times 10^{3}$</td>
</tr>
<tr>
<td>Skew</td>
<td>0.413</td>
<td>0.222</td>
<td>0.667</td>
<td>1.08</td>
</tr>
<tr>
<td><strong>orflow</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>$8.35 \times 10^{5}$</td>
<td>$3.71 \times 10^{5}$</td>
<td>$6.25 \times 10^{5}$</td>
<td>$3.38 \times 10^{5}$</td>
</tr>
<tr>
<td>SDev</td>
<td>$1.01 \times 10^{6}$</td>
<td>$5.09 \times 10^{5}$</td>
<td>$7.54 \times 10^{5}$</td>
<td>$5.28 \times 10^{5}$</td>
</tr>
<tr>
<td>Skew</td>
<td>3.48</td>
<td>5.14</td>
<td>4.84</td>
<td>6.55</td>
</tr>
<tr>
<td><strong>D^b</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>$6.45 \times 10^{3}$</td>
<td>$2.15 \times 10^{3}$</td>
<td>$5.39 \times 10^{3}$</td>
<td>$1.27 \times 10^{3}$</td>
</tr>
<tr>
<td>SDev</td>
<td>$3.42 \times 10^{3}$</td>
<td>$6.73 \times 10^{2}$</td>
<td>$2.73 \times 10^{3}$</td>
<td>$4.65 \times 10^{2}$</td>
</tr>
<tr>
<td>Skew</td>
<td>3.33</td>
<td>1.42</td>
<td>6.05</td>
<td>1.77</td>
</tr>
<tr>
<td><strong>D^a</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>$6.97 \times 10^{3}$</td>
<td>$2.12 \times 10^{3}$</td>
<td>$5.68 \times 10^{3}$</td>
<td>$1.49 \times 10^{3}$</td>
</tr>
<tr>
<td>SDev</td>
<td>$4.10 \times 10^{3}$</td>
<td>$7.38 \times 10^{2}$</td>
<td>$2.94 \times 10^{3}$</td>
<td>$6.52 \times 10^{2}$</td>
</tr>
<tr>
<td>Skew</td>
<td>4.15</td>
<td>2.33</td>
<td>5.47</td>
<td>2.84</td>
</tr>
<tr>
<td><strong>OI</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>$7.11 \times 10^{3}$</td>
<td>$2.18 \times 10^{3}$</td>
<td>$4.93 \times 10^{3}$</td>
<td>$1.56 \times 10^{3}$</td>
</tr>
<tr>
<td>SDev</td>
<td>$3.83 \times 10^{3}$</td>
<td>$6.85 \times 10^{2}$</td>
<td>$2.24 \times 10^{3}$</td>
<td>$5.28 \times 10^{2}$</td>
</tr>
<tr>
<td>Skew</td>
<td>3.47</td>
<td>2.23</td>
<td>5.35</td>
<td>1.37</td>
</tr>
<tr>
<td><strong>OI(k)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>$2.29 \times 10^{4}$</td>
<td>$6.81 \times 10^{3}$</td>
<td>$1.69 \times 10^{4}$</td>
<td>$5.26 \times 10^{3}$</td>
</tr>
<tr>
<td>SDev</td>
<td>$1.01 \times 10^{4}$</td>
<td>$2.65 \times 10^{3}$</td>
<td>$8.48 \times 10^{3}$</td>
<td>$2.55 \times 10^{3}$</td>
</tr>
<tr>
<td>Skew</td>
<td>2.60</td>
<td>3.33</td>
<td>2.38</td>
<td>3.03</td>
</tr>
</tbody>
</table>

Table 1: Descriptive statistics for all variables.
<table>
<thead>
<tr>
<th></th>
<th>BHP</th>
<th>CBA</th>
<th>NAB</th>
<th>RIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_t$</td>
<td>$\hat{\beta}$</td>
<td>0.0166</td>
<td>0.1475</td>
<td>0.0316</td>
</tr>
<tr>
<td></td>
<td>t-stat</td>
<td>1.9312</td>
<td>4.7736</td>
<td>2.2253</td>
</tr>
<tr>
<td></td>
<td>$R^2$</td>
<td>0.0276</td>
<td>0.1397</td>
<td>0.0574</td>
</tr>
<tr>
<td>$C_t$</td>
<td>$\hat{\beta}$</td>
<td>0.0150</td>
<td>0.1389</td>
<td>0.0298</td>
</tr>
<tr>
<td></td>
<td>t-stat</td>
<td>1.9034</td>
<td>4.8808</td>
<td>2.2626</td>
</tr>
<tr>
<td></td>
<td>$R^2$</td>
<td>0.0232</td>
<td>0.1364</td>
<td>0.0498</td>
</tr>
<tr>
<td>$x_t$</td>
<td>$\hat{\beta}$</td>
<td>0.5631</td>
<td>0.4139</td>
<td>0.8589</td>
</tr>
<tr>
<td></td>
<td>t-stat</td>
<td>6.2448</td>
<td>1.8204</td>
<td>4.8194</td>
</tr>
<tr>
<td></td>
<td>$R^2$</td>
<td>0.1721</td>
<td>0.0428</td>
<td>0.2052</td>
</tr>
<tr>
<td>$C_t$</td>
<td>$\hat{\beta}$</td>
<td>0.5350</td>
<td>0.3505</td>
<td>0.7669</td>
</tr>
<tr>
<td></td>
<td>t-stat</td>
<td>6.1342</td>
<td>1.8299</td>
<td>4.1629</td>
</tr>
<tr>
<td></td>
<td>$R^2$</td>
<td>0.1584</td>
<td>0.0337</td>
<td>0.1599</td>
</tr>
<tr>
<td>$x_t$</td>
<td>$\hat{\beta}$</td>
<td>-0.0029</td>
<td>0.0037</td>
<td>0.0233</td>
</tr>
<tr>
<td></td>
<td>t-stat</td>
<td>-0.1455</td>
<td>0.0546</td>
<td>0.3572</td>
</tr>
<tr>
<td></td>
<td>$R^2$</td>
<td>0.0001</td>
<td>0.0000</td>
<td>0.0010</td>
</tr>
<tr>
<td>$C_t$</td>
<td>$\hat{\beta}$</td>
<td>-0.0057</td>
<td>0.0085</td>
<td>0.0264</td>
</tr>
<tr>
<td></td>
<td>t-stat</td>
<td>-0.2921</td>
<td>0.1397</td>
<td>0.4137</td>
</tr>
<tr>
<td></td>
<td>$R^2$</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0013</td>
</tr>
</tbody>
</table>

Table 2: Regression results for $x_t$ given by $\text{vol}$ (top panel), $\text{ntrades}$ (middle panel) and $\text{orflow}$ (bottom panel). Both $\text{vol}$ and $\text{ntrades}$ are scaled by $1 \times 10^6$ and $\text{ntrades}$ is scaled by $1 \times 10^4$. 

In analysing the influence of the order book variables on volatility, we begin by estimating the following regression based on depth at the best quotes,

\[ RV_t \text{ or } C_t = \alpha + \beta_1 D_b^t + \beta_2 D_a^t + \epsilon_t. \]  

(8)

The results from this regression for both total volatility and the continuous component are reported in Table 3. In virtually all cases, the coefficient on bid depth (\( \beta_1 \)) for either \( RV_t \) or \( C_t \) are insignificant. However, the coefficient on ask depth (\( \beta_2 \)) is significantly negative in most cases. Greater depth leads to lower volatility as greater trading volume can be executed with lower impacts on prices. This result indicates that the state of the ask side of the market is responsible for the greatest variation in volatility.

The role of order imbalance (asymmetry in the order book) is examined in the context of the following regression

\[ RV_t \text{ or } C_t = \alpha + \beta_1 OI_t + \beta_2 OI(k)_t + \epsilon_t. \]  

(9)

Results from this regression are reported in Table 4. Given either \( RV_t \) or \( C_t \), there appears to be little evidence to support the importance of \( OI \), the imbalance at the best quotes. In this case, \( \beta_1 \) is only significant for BHP. However, imbalance at quotes beyond the best, \( k = 2 \), \( OI(k) \) is found to be significantly negatively to related to both \( RV_t \) or \( C_t \) for all stocks. This is an interesting finding in that it reveals that when depth in the order book, further from the best quotes is heavily skewed toward either the buy or sell side volatility is lower on average. This indicates that heavier activity in either direction reduces volatility.

Finally, the role of the order book variables deemed to be significant above, \( D_b^t \) and \( OI(k) \) are
examined in the presence of the volume and trade frequency, \( \text{vol} \) and \( \text{ntrades} \). This is achieved in the context of the following regression,

\[
RV_t \text{ or } C_t = \alpha + \beta_1 \text{vol}_t + \beta_2 \text{ntrades}_t + \beta_3 D_t^2 + \beta_4 OI(k)_t + \varepsilon_t,
\]  

the results for these regressions are reported in Table 5. Given either \( RV_t \) or \( C_t \), both \( \text{vol} \) and \( \text{ntrades} \) generally continue to be significant. Depth at the best ask quotes continues to be significant for only BHP and NAB. Order imbalance away from the best quotes, \( OI(k) \) continues to be highly significant for across all stocks considered.

Overall, these results extend the findings of Jones, Kaul and Lipson (1994) and Chan and Fong (2006) and Giot et al. (2009) in showing that volatility is not only related to volume and frequency of trades but also to measures capturing the structure of the open limit order book. Volatility (and its associated diffusive component) is found to be significantly related to order imbalance away from the best quotes. Greater imbalance leads to lower volatility on average. Depth on the ask side of the market shows a similar effect, however it is somewhat less significant than order imbalance. In contrast to Giot et al. (2009), none of the variables considered here were found to be significantly related to the presence of jump activity.

5 Conclusion

From a theoretical perspective, movements in volatility are often linked to information arrival. Empirically, the relationship between volatility and volume has attracted a great deal of atten-
<table>
<thead>
<tr>
<th></th>
<th>BHP</th>
<th>CBA</th>
<th>NAB</th>
<th>RIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>$RV_t$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\beta}_1$</td>
<td>0.0262</td>
<td>0.2044</td>
<td>0.0467</td>
<td>0.0493</td>
</tr>
<tr>
<td>t-stat</td>
<td>2.8715</td>
<td>3.8565</td>
<td>3.0583</td>
<td>1.4586</td>
</tr>
<tr>
<td>$\hat{\beta}_2$</td>
<td>0.3436</td>
<td>-0.2310</td>
<td>0.6246</td>
<td>0.6266</td>
</tr>
<tr>
<td>t-stat</td>
<td>3.1376</td>
<td>-0.8660</td>
<td>3.4106</td>
<td>4.1002</td>
</tr>
<tr>
<td>$\hat{\beta}_3$</td>
<td>-0.0105</td>
<td>-0.0127</td>
<td>-0.0143</td>
<td>-0.0186</td>
</tr>
<tr>
<td>t-stat</td>
<td>-2.9495</td>
<td>-0.9980</td>
<td>-3.3131</td>
<td>-1.1394</td>
</tr>
<tr>
<td>$\hat{\beta}_4$</td>
<td>-0.3068</td>
<td>-2.2394</td>
<td>-0.5867</td>
<td>-2.1641</td>
</tr>
<tr>
<td>t-stat</td>
<td>-2.6232</td>
<td>-3.7988</td>
<td>-3.3603</td>
<td>-2.7006</td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.3627</td>
<td>0.2464</td>
<td>0.3308</td>
<td>0.2513</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>BHP</th>
<th>CBA</th>
<th>NAB</th>
<th>RIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_t$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\beta}_1$</td>
<td>0.0244</td>
<td>0.2000</td>
<td>0.0517</td>
<td>0.0478</td>
</tr>
<tr>
<td>t-stat</td>
<td>2.5597</td>
<td>3.9223</td>
<td>3.3957</td>
<td>1.5019</td>
</tr>
<tr>
<td>$\hat{\beta}_2$</td>
<td>0.3302</td>
<td>-0.2817</td>
<td>0.5029</td>
<td>0.6425</td>
</tr>
<tr>
<td>t-stat</td>
<td>2.9266</td>
<td>-1.2209</td>
<td>2.5951</td>
<td>4.5147</td>
</tr>
<tr>
<td>$\hat{\beta}_3$</td>
<td>-0.0102</td>
<td>-0.0114</td>
<td>-0.0140</td>
<td>-0.0154</td>
</tr>
<tr>
<td>t-stat</td>
<td>-2.9903</td>
<td>-0.9269</td>
<td>-3.0887</td>
<td>-0.9194</td>
</tr>
<tr>
<td>$\hat{\beta}_4$</td>
<td>-0.2959</td>
<td>-2.0690</td>
<td>-0.6397</td>
<td>-2.0063</td>
</tr>
<tr>
<td>t-stat</td>
<td>-2.4801</td>
<td>-3.6559</td>
<td>-3.8338</td>
<td>-2.5073</td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.3425</td>
<td>0.2390</td>
<td>0.2933</td>
<td>0.2558</td>
</tr>
</tbody>
</table>

Table 5: Regression results for equation 10.
tion. Along with trading volume, trade frequency has been found to be significantly related to volatility in various studies. Giot, Laurent and Petitjean (2009) extend this literature by examining the link between trading volume and trade frequency and the components of total realized volatility. This paper presents a novel contribution to our understanding of the volume volatility relationship. It examines the role played by the structure of an open limit order book on volatility. It is found that at the best quotes, it is depth on the ask side of the market that is important. Not surprisingly, greater depth leads to lower volatility on average. It is also found that while order imbalance across the best quotes is not important, imbalance at quotes away from the best quotes is highly significant. This indicates that when market activity is heavily skewed in one direction volatility is on average lower. Overall, a number of variables capturing the state of the order book appear to be relevant for explaining variations in volatility, even in the presence of the traditional trading volume or frequency variables. An interesting future direction for research would be examine the importance of such variables for modeling very high frequency intraday movements in volatility.
References


List of NCER Working Papers

No. 63  (Download full text)  
Adrian Pagan  
Can Turkish Recessions be Predicted?

No. 62  (Download full text)  
Lionel Page and Katie Page  
Evidence of referees’ national favouritism in rugby

No. 61  (Download full text)  
Nicholas King, P Dorian Owen and Rick Audas  
Playoff Uncertainty, Match Uncertainty and Attendance at Australian National Rugby League Matches

No. 60  (Download full text)  
Ralf Becker, Adam Clements and Robert O’Neill  
A Cholesky-MIDAS model for predicting stock portfolio volatility

No. 59  (Download full text)  
P Dorian Owen  
Measuring Parity in Sports Leagues with Draws: Further Comments

No. 58  (Download full text)  
Don Harding  
Applying shape and phase restrictions in generalized dynamic categorical models of the business cycle

No. 57  (Download full text)  
Renee Fry and Adrian Pagan  
Sign Restrictions in Structural Vector Autoregressions: A Critical Review

No. 56  (Download full text)  
Mardi Dungey and Lyudmyla Hvozdyk  
Cojumping: Evidence from the US Treasury Bond and Futures Markets

No. 55  (Download full text)  
Martin G. Kocher, Marc V. Lenz and Matthias Sutter  
Psychological pressure in competitive environments: Evidence from a randomized natural experiment: Comment

No. 54  (Download full text)  
Adam Clements and Annastiina Silvennoinen  
Estimation of a volatility model and portfolio allocation
No. 53  [Download full text]  
Luis Catão and Adrian Pagan  
The Credit Channel and Monetary Transmission in Brazil and Chile: A Structured VAR Approach

No. 52  [Download full text]  
Vlad Pavlov and Stan Hurn  
Testing the Profitability of Technical Analysis as a Portfolio Selection Strategy

No. 51  [Download full text]  
Sue Bridgewater, Lawrence M. Kahn and Amanda H. Goodall  
Substitution Between Managers and Subordinates: Evidence from British Football

No. 50  [Download full text]  
Martin Fukac and Adrian Pagan  
Structural Macro-Econometric Modelling in a Policy Environment

No. 49  [Download full text]  
Tim M Christensen, Stan Hurn and Adrian Pagan  
Detecting Common Dynamics in Transitory Components

No. 48  [Download full text]  
Egon Franck, Erwin Verbeek and Stephan Nüesch  
Inter-market Arbitrage in Sports Betting

No. 47  [Download full text]  
Raul Caruso  
Relational Good at Work! Crime and Sport Participation in Italy. Evidence from Panel Data Regional Analysis over the Period 1997-2003.

No. 46  [Download full text]  (Accepted)  
Peter Dawson and Stephen Dobson  
The Influence of Social Pressure and Nationality on Individual Decisions: Evidence from the Behaviour of Referees

No. 45  [Download full text]  
Ralf Becker, Adam Clements and Christopher Coleman-Fenn  
Forecast performance of implied volatility and the impact of the volatility risk premium

No. 44  [Download full text]  
Adam Clements and Annastiina Silvennoinen  
On the economic benefit of utility based estimation of a volatility model

No. 43  [Download full text]  
Adam Clements and Ralf Becker  
A nonparametric approach to forecasting realized volatility

No. 42  [Download full text]  
Uwe Dulleck, Rudolf Kerschbamer and Matthias Sutter  
The Economics of Credence Goods: On the Role of Liability, Verifiability, Reputation and Competition
No. 41  (Download full text)  
Adam Clements, Mark Doolan, Stan Hurn and Ralf Becker  
On the efficacy of techniques for evaluating multivariate volatility forecasts

No. 40  (Download full text)  
Lawrence M. Kahn  
The Economics of Discrimination: Evidence from Basketball

No. 39  (Download full text)  
Don Harding and Adrian Pagan  
An Econometric Analysis of Some Models for Constructed Binary Time Series

No. 38  (Download full text)  
Richard Dennis  
Timeless Perspective Policymaking: When is Discretion Superior?

No. 37  (Download full text)  
Paul Frijters, Amy Y.C. Liu and Xin Meng  
Are optimistic expectations keeping the Chinese happy?

No. 36  (Download full text)  
Benno Torgler, Markus Schaffner, Bruno S. Frey, Sascha L. Schmidt and Uwe Dulleck  
Inequality Aversion and Performance in and on the Field

No. 35  (Download full text)  
T M Christensen, A. S. Hurn and K A Lindsay  
Discrete time-series models when counts are unobservable

No. 34  (Download full text)  
Adam Clements, A S Hurn and K A Lindsay  
Developing analytical distributions for temperature indices for the purposes of pricing temperature-based weather derivatives

No. 33  (Download full text)  
Adam Clements, A S Hurn and K A Lindsay  
Estimating the Payoffs of Temperature-based Weather Derivatives

No. 32  (Download full text)  
T M Christensen, A S Hurn and K A Lindsay  
The Devil is in the Detail: Hints for Practical Optimisation

No. 31  (Download full text)  
Uwe Dulleck, Franz Hackl, Bernhard Weiss and Rudolf Winter-Ebmer  
Buying Online: Sequential Decision Making by Shopbot Visitors

No. 30  (Download full text)  
Richard Dennis  
Model Uncertainty and Monetary Policy
No. 29  (Download full text)
Richard Dennis
The Frequency of Price Adjustment and New Keynesian Business Cycle Dynamics

No. 28  (Download full text)
Paul Frijters and Aydogan Ulker
Robustness in Health Research: Do differences in health measures, techniques, and time frame matter?

No. 27  (Download full text)
Paul Frijters, David W. Johnston, Manisha Shah and Michael A. Shields

No. 26  (Download full text)
Paul Frijters and Tony Beatton
The mystery of the U-shaped relationship between happiness and age.

No. 25  (Download full text)
T M Christensen, A S Hurn and K A Lindsay
It never rains but it pours: Modelling the persistence of spikes in electricity prices

No. 24  (Download full text)
Ralf Becker, Adam Clements and Andrew McClelland
The Jump component of S&P 500 volatility and the VIX index

No. 23  (Download full text)
A. S. Hurn and V.Pavlov
Momentum in Australian Stock Returns: An Update

No. 22  (Download full text)
Mardi Dungey, George Milunovich and Susan Thorp
Unobservable Shocks as Carriers of Contagion: A Dynamic Analysis Using Identified Structural GARCH

No. 21  (Download full text) (forthcoming)
Mardi Dungey and Adrian Pagan
Extending an SVAR Model of the Australian Economy

No. 20  (Download full text)
Benno Torgler, Nemanja Antic and Uwe Dulleck
Mirror, Mirror on the Wall, who is the Happiest of Them All?

No. 19  (Download full text)
Justina AV Fischer and Benno Torgler
Social Capital And Relative Income Concerns: Evidence From 26 Countries

No. 18  (Download full text)
Ralf Becker and Adam Clements
Forecasting stock market volatility conditional on macroeconomic conditions.
No. 17  (Download full text)
Ralf Becker and Adam Clements
Are combination forecasts of S&P 500 volatility statistically superior?

No. 16  (Download full text)
Uwe Dulleck and Neil Foster
Imported Equipment, Human Capital and Economic Growth in Developing Countries

No. 15  (Download full text)
Ralf Becker, Adam Clements and James Curchin
Does implied volatility reflect a wider information set than econometric forecasts?

No. 14  (Download full text)
Renee Fry and Adrian Pagan
Some Issues in Using Sign Restrictions for Identifying Structural VARs

No. 13  (Download full text)
Adrian Pagan
Weak Instruments: A Guide to the Literature

No. 12  (Download full text)
Ronald G. Cummings, Jorge Martinez-Vazquez, Michael McKee and Benno Torgler
Effects of Tax Morale on Tax Compliance: Experimental and Survey Evidence

No. 11  (Download full text)
Benno Torgler, Sascha L. Schmidt and Bruno S. Frey
The Power of Positional Concerns: A Panel Analysis

No. 10  (Download full text)
Ralf Becker, Stan Hurn and Vlad Pavlov
Modelling Spikes in Electricity Prices

No. 9  (Download full text)
A. Hurn, J. Jeisman and K. Lindsay
Teaching an Old Dog New Tricks: Improved Estimation of the Parameters of Stochastic Differential Equations by Numerical Solution of the Fokker-Planck Equation

No. 8  (Download full text)
Stan Hurn and Ralf Becker
Testing for nonlinearity in mean in the presence of heteroskedasticity.

No. 7  (Download full text) (published)
Adrian Pagan and Hashem Pesaran
On Econometric Analysis of Structural Systems with Permanent and Transitory Shocks and Exogenous Variables.

No. 6  (Download full text) (published)
Martin Fukac and Adrian Pagan
Limited Information Estimation and Evaluation of DSGE Models.
No. 5  (Download full text)
Andrew E. Clark, Paul Frijters and Michael A. Shields
Income and Happiness: Evidence, Explanations and Economic Implications.

No. 4  (Download full text)
Louis J. Maccini and Adrian Pagan
Inventories, Fluctuations and Business Cycles.

No. 3  (Download full text)
Adam Clements, Stan Hurn and Scott White

No. 2  (Download full text)
Stan Hurn, J.Jeisman and K.A. Lindsay

No. 1  (Download full text)
Adrian Pagan and Don Harding
The Econometric Analysis of Constructed Binary Time Series.